1.0 INTENDED USE

The EIagen C-ANCA (PR3) assay is an enzyme-linked immunosorbent assay method for the semi-quantitative determination of specific IgG autoantibodies to Proteinase-3 in human serum. The results of the anti-Pr-3 assay can be used as an aid in the diagnosis of auto-immune vasculitides including Wegener’s granulomatosis and other conditions associated with elevated anti-neutrophil cytoplasmic antibodies (c-ANCA). Levels of these autoantibodies are one indicator in a multi-factorial diagnostic regime.

2.0 SUMMARY AND EXPLANATION OF THE TEST

Autoantibodies recognising antigens in the cytoplasmic granules of neutrophils (ANCA) were first described in a population suffering from Wegener’s granulomatosis. Initial investigations were carried out using immunofluorescence and two major patterns were observed: C-ANCA (cytoplasmic) and P-ANCA (perinuclear).

C-ANCA has been shown to be mainly due to a 28kD serine proteinase termed proteinase-3 and is found in the majority of patients with Wegener’s granulomatosis. Pr-3 is clinically significant as a diagnostic marker for Wegener’s granulomatosis, a disease characterised by a necrotising vasculitis of the upper and lower respiratory tract and concomitant glomerulonephritis.

Previously, the diagnosis of this disease carried a very poor prognosis, however, like other autoimmune diseases, improvements in diagnosis, such as the measurement of ANCA, have shown the disease to be present in milder forms and appropriate treatment has improved patient prospects considerably. The sensitivity and specificity of Pr-3 as a disease marker for Wegener’s granulomatosis has been quoted as high as 96% and 95%, respectively, in severe and extended disease. A less severe or minimal Wegener’s with no renal involvement has been described: Pr-3 is present in 67-87% of these patients. C-ANCA is also found at levels of 40-50% in pauci-immune necrotising glomerulonephritis, a further variant of the disease.

Up to 10% of patients with Wegener’s granulomatosis have anti-Myeloperoxidase (MPO) (P-ANCA) rather than anti-Pr-3 (C-ANCA) which is characteristic of the disease. It was thought that the two specificities did not appear together, but recent studies have shown that this does occur. Measurement of anti-Pr-3 antibodies is a useful adjunct to the diagnosis of Wegener’s granulomatosis.

3.0 PRINCIPLE OF THE ASSAY

The EIagen C-ANCA (PR3) assay for detection of autoantibodies is a solid phase immunosorbent assay (ELISA) in which the analyte is indicated by a colour reaction of an enzyme and substrate. The EIagen wells are coated with purified antigen.

On adding diluted serum to the wells the antibodies present bind to the antigen. After incubating at room temperature and washing away unbound material, horseradish peroxidase conjugated anti-IgG monoclonal antibody is added, which binds to the immobilised antibodies.

Following further incubation and washing, tetra-methyl benzidine substrate (TMB) is added to each well. The presence of the antigen-antibody-conjugate complex turns the substrate to a dark blue colour. Addition of the stop solution turns the colour to yellow.

The colour intensity is proportional to the amount of autoantibodies present in the original serum sample.

4.0 KIT COMPONENTS

4.1 MICROPLATE

(code 16PIA) One microplate is supplied which contains 12 strips of 8 breakapart wells. The wells are coated with Pr-3 antigen purified from human neutrophils.

4.2 CONJUGATE

(code 16HRP) One vial containing 15ml of ready-to-use HRP conjugate. Conjugate contains 0.05% Proclin 300. Conjugates are color coded pink.

4.3 CALIBRATORS

(code 16CAL1-4) Four vials containing 1ml of calibrator. The calibrators are calibrated to arbitrary units and contain human antisera. The calibrators contain 0.99% sodium azide as a preservative. The concentrations allocated to the calibrators are:

<table>
<thead>
<tr>
<th>Calibrator</th>
<th>symbol</th>
<th>code</th>
<th>concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calibrator 1</td>
<td>[CAL_1]</td>
<td>16CAL1</td>
<td>5 u/mL</td>
</tr>
<tr>
<td>Calibrator 2</td>
<td>[CAL_2]</td>
<td>16CAL2</td>
<td>16 u/mL</td>
</tr>
<tr>
<td>Calibrator 3</td>
<td>[CAL_3]</td>
<td>16CAL3</td>
<td>40u/mL</td>
</tr>
<tr>
<td>Calibrator 4</td>
<td>[CAL_4]</td>
<td>16CAL4</td>
<td>100 u/mL</td>
</tr>
</tbody>
</table>

4.4 POSITIVE CONTROL

(code [CONTROL]+)
4.5 NEGATIVE CONTROL [CONTROL-]
(code 16NEG) One vial containing 0.45 ml of concentrated negative control which contains normal human serum and 0.09% sodium azide as a preservative.

The controls (positive and negative) are provided in a concentrated form and should be diluted 1/100 with sample diluent buffer before use. Prepare fresh control dilutions before each assay run. vortex all samples and controls before testing.

4.6 SUBSTRATE (TMB) [SOL[N]TMB] (code TMBC) One vial containing 15ml of ready-to-use tetra-methyl benzidine (TMB) substrate.

4.7 SAMPLE DILUENT [DIL[SPE] (code 16SD) Two bottles containing 60ml/each of ready-to-use sample diluent buffer. The buffer includes 0.09% Sodium azide. Sample diluent buffer is color coded blue.

4.8 WASHING BUFFER 20X [BUF][WASH][20x] (code TL/WC) One bottle containing 50ml of wash buffer concentrate. Wash buffer concentrate contains 0.06% Proclin 300. Dilute the whole content of the bottle up to one liter with distilled or deionized water. Mix well before use. Store this solution at 2...8°C if it is not to be used immediately. The diluted wash buffer is stable at 2...8°C for one week.

4.9 STOP SOLUTION [SOL[N][STOP] (code STOPC) One bottle containing 20ml of 0.25M HSO₄ stop solution. The MSDS is available upon request of laboratory personnel.

5.0 STORAGE AND STABILITY AFTER THE FIRST OPENING
- Store kit components at 2...8°C and do not use after the expiry date on the box outer label.
- Before use all components should be allowed to warm up to ambient temperature (18...25°C).
- After use, the plate should be reseeded, the bottle caps replaced and tightened and the kit stored at 2...8°C.
- The opened kit should be used within three months.

6.0 MATERIALS AND EQUIPMENT REQUIRED BUT NOT PROVIDED
- Distilled or deionized water.
- Wash bottle, automated or semi-automated microwell plate washing system.
- Rack for sample dilution.
- Micropipettes including multichannels capable of accurately delivering 10-1000µl (less than 3% cv).
- Reservoirs for multichannel pipettes.
- One-liter graduated cylinder.
- Disposable basins and 0.5% sodium hypochlorite (50 ml bleach in 950ml water).
- Microtiter plate reader equipped for the measurement of the absorbance at 450 and 405 nm (reference filter at 620 nm).
- Paper towels, pipette tips and timer.

7.0 WARNINGS OR PRECAUTIONS
7.1 SAFETY PRECAUTIONS
- All reagents in this kit are for in vitro diagnostic use only.
- Only experienced laboratory personnel should use this test and handling should be performed by GLP.
- Operators should wear gloves and protective clothing when handling any patient sera or serum based products.
- Reagents contain preservatives which may be toxic if ingested. Do not pipette by mouth. Avoid contact of reagents or patient samples with skin or mucous membranes. If contact occurs, immediately flush with large quantities of water. Avoid splashing or creation of aerosols. Reusable glassware must be thoroughly washed and rinsed so that it is free of all detergents.
- Sera used in the preparation of the calibrators and controls have been tested for the presence of antibodies to Human Immunodeficiency Virus (HIV 1 and 2). They also tested for Hepatitis B Surface and Hepatitis B Surface Ag and HCV and found to be negative. All material is tested with FDA approved assays. Because no test method can offer complete assurance that HIV, HBsAg or other infectious agents are absent, it is recommended that human serum based products be handled with the same precautions used for patient specimens.
- Dispose of reagent solutions containing sodium azide and thimerosal as preservatives according to all local, state and national regulations. To dispose of reagents containing azide, flush away copious amounts of water. Dispose with caution as sodium azide can form explosive compounds on prolonged contact with lead or copper piping.

7.2 TECHNICAL PRECAUTIONS
A. Correct use of reagents and proper pipetting
- The performance data represented here were obtained using specific reagents listed in the package insert. Do not use reagents from other manufacturers in the kits.
- Do not use reagents from other EIAgen kits with this kit. Do not mix reagents from different kit lots.
- Do not dilute or adulterate the kit reagents, unless directed by the kit protocol.
- Do not use the substrate solution if it has begun to turn blue.
- Do not use heat-inactivated serum.
- Microplate washing is important. Improperly washed wells will give erroneous results.

B. Adherence to assay procedure and specifications
The obtained values have to be always compared to the ones reported in QC sheet. Do not use the kit to determine values outside the range indicated in the IFU. The test protocol must be followed strictly. Observe the indicated incubation times and temperature and the washing procedure. These critical steps include the positive and negative controls in every test run to monitor for reagent stability and correct assay performance. Please refer also to section 10.2 Quality Control.

8.0 SPECIMEN COLLECTION AND STORAGE
Use serum in this procedure.
- It is most important to preserve the chemical integrity of a blood specimen from the moment it is collected until it is assayed. Obtain patient samples by non-traumatic venipuncture, using a vacuum tube or sterile syringe. If a syringe is used, transfer the blood immediately to a vacuum tube (plain red-top or serum separator). Allow samples to clot at room temperature (18...25°C) for at least 20-30 minutes, until the clot just begins to retract. Spin the sample in a centrifuge. Immediately following the centrifugation, transfer the cell-free serum to a tightly stopped storage bottle.
- Do not use sera samples showing signs of haemolysis. If it is necessary to store a sample prior to analysis, it is recommended that, for a period of up to 72 hours, store the sample in a sealed container at 2...8°C. Freeze samples at -20°C if longer storage is required.
- Avoid repeat freeze-thawing.

9.0 ASSAY PROCEDURE
9.1 REAGENT PREPARATION
Bring all reagents to room temperature (18...25°C). Select sufficient microwells for the test. Remove protective covering and select sufficient wells to accommodate the patient samples, calibrators and assay controls. Each sample is recommended to be tested in duplicate. Dilute all serum samples and assay controls 1/100 in sample diluent by adding 10µl to 990µl sample diluent. Calibrators do not require dilution.

9.2 PIPETTING AND INCUBATION STEPS
A. Pipette 100µl of the calibrators, diluted control or diluted patient sample into the wells. Desepress to 100µl of sample diluent as zero calibrator for the first well.
B. Incubate the wells at room temperature (18...25°C) for 30 minutes.
C. Wash the wells three times as described in section 9.3 PROCEDURAL NOTES.
D. Add 100µl of ready-to-use conjugate to each well.
E. Incubate the wells at room temperature (18...25°C) for 15 minutes.
F. Repeat washing as in section C above.
G. Add 100µl of ready-to-use TMB substrate to each well.
H. Incubate the wells at room temperature (18...25°C) for 15 minutes.
I. Add 50µl of stop solution to each well. Tap gently to ensure uniform color distribution and read within 15 minutes.
J. To read the plate, ensure the base is free from moisture and no air bubbles are in the wells. Read the absorbance of the well contents at 450nm on a suitable plate reader. On readers equipped with a dual wavelength facility set the reference filter to 600-650 nm.
K. Subtract the blank (or mean of blanks) from the optical densities of the standard, controls and patient samples. If the assay was performed in duplicate, the mean of the wells should be taken.

9.3 PROCEDURAL NOTES
Do not allow the wells to dry between incubations. Do not vary reagents and incubation temperatures above or below room temperature (18...25°C).

9.4 WASHING PROCEDURE
The washing procedure can be done manually with a multichannel pipette or on an automatic plate washer. Empty the wells, invert and tap dry on paper towel.

10.0 CALCULATION OF RESULTS
10.1 VALIDITY OF THE ASSAY
In order that the assay be valid, the following criteria must be fulfilled:
- All kits supplied with each EIAgen C-ANCA (PR3) kit, positive and negative control samples should be assayed with each run. The results of these quality control samples should fall within the limits indicated on the Certificate of Analytical Performance.

10.2 QUALITY CONTROL
Good laboratory practice indicates that with each assay run, one or more quality control samples of known antibody level should be analyzed as though they were clinical samples. Positive and negative control sample are supplied with each kit, which are to be assayed with each run. The results of these quality control samples should fall within the limits indicated on the Certificate of Analytical Performance.
Should the results fall outwith the range repeat the assay using freshly prepared controls. Should the results continue to fall outside the specific range, and after equipment, adherence to the protocol and laboratory procedure have been verified, seek assistance from the supplier. Do not report patient results if the control results fall outwith the acceptable ranges.

10.3 OD CONVERSION
The optical densities (ODs) higher than 2.0 are out of the measurement range of some microplate readers. It is therefore necessary, for ODs higher than 2.0, to perform a reading at 405nm (= wavelength of peak shoulder) in addition to 450nm (peak wavelength) in addition to 450nm (peak wavelength) and 620 (reference filter for the subtraction of interferences due to the plastic).

For microplate readers unable to read the plate at 3 wavelengths at the same time, it is advisable to proceed as follows:
- Read the microplate at 450 nm and at 620 nm
- Read again the plate at 405 nm and 620 nm
- Find out the wells whose ODs at 450 nm are higher than 2.0
- Select the corresponding ODs read at 405 nm and multiply these values at 405 nm by the conversion factor 3.0 (where OD 450/OD 405 = 3.0), that is:

\[
\text{OD 450 nm} = \text{OD 405 nm} \times 3.0
\]

Warning: the conversion factor 3.0 is suggested only. For better accuracy, the user is advised to calculate the conversion factor specific for his own reader.

10.4 SEMI-QUANTITATIVE CALCULATION
Data Reduction – manual method
Plot the optical densities (OD's) of the calibrators against the concentration values, using a linear y-axis (OD) and a logarithmic x-axis (concentration). Use the sample diluent as the zero calibrator. The concentration value of the patient samples can then be determined from this calibration curve.

Data reduction – automated method
Alternatively, use a 4-parameter logistic curve fitting for the calibrator curve and for calculating results, using a log scale for the x-axis and a linear scale for the y-axis.

11.0 EXPECTED VALUES
A total of 167 samples were assayed. 53 of the samples were from normal subjects and 114 from people with an autoimmune condition. The cut-offs shown below were partly based on the statistical evaluation of 117 of these samples, all of which were anti-Pr-3 negative.

\[
\begin{array}{|c|c|c|}
\hline
\text{OD} & \text{Negative} & \text{Equivocal} & \text{Positive} \\
\hline
3/4 & <6 & 6 - 8 & >8 \\
\hline
\end{array}
\]

It is recommended that equivocal samples be retested using a subsequent sample.

12.0 LIMITATIONS OF PROCEDURE
12.1 KNOWN INTERFERENCES
Grossly haemolysed, lipaemic or microbiologically contaminated samples should not be used. Samples with abnormally elevated levels of haemoglobin, bilirubin and especially EDTA may interfere with assay performance and accuracy.

A 'hook effect' may only be seen with very high samples which are above the assay range. No hook effect is seen up to 3122.2u/ml. This is a sample specific effect.

12.2 CAUTIONS IN INTERPRETATIONS OF THE RESULTS
A negative result should not be used as a sole criterion to rule out Wegener’s granulomatosis or other autoimmune disease, but must be taken in relation to other clinical observations and diagnostic tests. While the precision of the ELAgen kit is sufficient to allow samples to be measured in single determinations, this is done at the clinical laboratory’s discretion. It is advised that duplicate determinations should be used to enable identification of potential pipetting error or to allow for confirmation in the equivocal range.

It should be noted that anti-Pr-3 antibodies occur at low levels in other autoimmune and non-autoimmune conditions. Therefore all other clinical observations and diagnostic tests should be taken into account for clinical diagnosis.

13.0 PERFORMANCE CHARACTERISTICS
13.1 PRECISION
Intra- and inter-assay variation were checked using a number of samples.

<table>
<thead>
<tr>
<th>Intra-assay variation:</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>%cv</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>2.2</td>
<td>21.5</td>
<td>72.1</td>
<td>16.5</td>
</tr>
<tr>
<td>Inter-assay variation:</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>%cv</td>
</tr>
<tr>
<td>x</td>
<td>2.2</td>
<td>21.5</td>
<td>72.1</td>
<td>19.0</td>
</tr>
</tbody>
</table>

13.2 ANALYTICAL SPECIFICITY AND SENSITIVITY
Of a panel of ‘normal’ asymptomatic individuals 99% gave a negative result. No cross reactivity with anti-DNA, anti-Thyroglobulin, anti-TPO, anti-Smooth Muscle, anti-Gastric Patietal Cell, various ENA’s, P-ANCA or Rheumatoid factor was seen.

The sensitivity of the assay was established by calculation of the mean plus two standard deviations of a minimum of 20 replicates of the zero standard which gave a value of 0.98 u/ml.

13.3 RELATIVE SPECIFICITY AND SENSITIVITY
The manual assay was compared to another commercially available test and was found to be substantially equivalent. The results are shown below:

<table>
<thead>
<tr>
<th>Manual</th>
<th>Positive</th>
<th>Equivocal</th>
<th>Negative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Predicate</td>
<td>17</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Relative sensitivity</td>
<td>100 %</td>
<td>94.0 %</td>
<td>94.7 %</td>
</tr>
</tbody>
</table>

14.0 AUTOMATION
Application protocols for the proper automation on the Adaltis microplate analyzers are available upon request at Adaltis directly.

15.0 SUGGESTIONS FOR TROUBLESHOOTING
Adherence to assay procedure and specifications, as well as a correct use of reagents and proper pipetting, may help to avoid the following kinds of errors:

<table>
<thead>
<tr>
<th>POSSIBLE CAUSES / SUGGESTIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incorrect dispensing volume of reagents (suggestion: check the correspondence between the volume dispensed by the pipette and the one required by the assay: re-calibrate again pipettes)</td>
</tr>
<tr>
<td>Incorrect temperature or incorrect incubation time (suggestion: more care in the incubator maintenance; note down the beginning of the incubation)</td>
</tr>
<tr>
<td>Error in washing or in spectrophotometer reading (suggestion: check operating or settings of respective instruments)</td>
</tr>
<tr>
<td>Contamination of Substrate (suggestion: use only disposable and clean plastic containers)</td>
</tr>
<tr>
<td>Low reproducible results</td>
</tr>
<tr>
<td>Incorrect dispensing volume of reagents (suggestion: check the correspondence between the volume dispensed by the pipette and the one required by the assay: re-calibrate again pipettes)</td>
</tr>
<tr>
<td>Incorrect temperature or incorrect incubation time (suggestion: more care in the incubator maintenance)</td>
</tr>
<tr>
<td>Error in washing or in reading to spectrophotometer (suggestion: check operating or settings of respective instruments)</td>
</tr>
<tr>
<td>Contamination of Substrate (suggestion: use only disposable and clean plastic containers)</td>
</tr>
<tr>
<td>Pollution or degradation of reagents (suggestion: use appropriate tips, disposable and clean plastic containers for reagents and high quality distilled or equivalent water)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ERROR</th>
<th>POSSIBLE CAUSES / SUGGESTIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>OD very different (± 50%) from OD reported on QC</td>
<td></td>
</tr>
<tr>
<td>Incorrect dispensing volume of reagents (suggestion: check the correspondence between the volume dispensed by the pipette and the one required by the assay: re-calibrate again pipettes)</td>
<td></td>
</tr>
<tr>
<td>Incorrect temperature or incorrect incubation time (suggestion: more care in the incubator maintenance)</td>
<td></td>
</tr>
<tr>
<td>Error in washing or in reading to spectrophotometer (suggestion: check operating or settings of respective instruments)</td>
<td></td>
</tr>
<tr>
<td>Contamination of Substrate (suggestion: use only disposable and clean plastic containers)</td>
<td></td>
</tr>
<tr>
<td>No colourimetric after addition of substrate</td>
<td></td>
</tr>
<tr>
<td>- Strong contamination of conjugate or Substrate</td>
<td></td>
</tr>
<tr>
<td>- Errors in performing the assay procedure (e.g. accidental pipetting of reagents in a wrong sequence or from the wrong vial, etc.)</td>
<td></td>
</tr>
<tr>
<td>Too low reaction (too low ODs)</td>
<td></td>
</tr>
<tr>
<td>- Incorrect conjugate (e.g. not from original kit)</td>
<td></td>
</tr>
<tr>
<td>- Incubation time too short, incubation temperature too low</td>
<td></td>
</tr>
<tr>
<td>Too high reaction (too high ODs)</td>
<td></td>
</tr>
<tr>
<td>- Incorrect conjugate (e.g. not from original kit)</td>
<td></td>
</tr>
<tr>
<td>- Accidental contamination/degradation of conjugate</td>
<td></td>
</tr>
<tr>
<td>- Incubation time too long, incubation temperature too high</td>
<td></td>
</tr>
<tr>
<td>- Water quality for wash buffer insufficient (low grade of decontamination)</td>
<td></td>
</tr>
<tr>
<td>- Insufficient washing (conjugates not properly removed)</td>
<td></td>
</tr>
<tr>
<td>Unexplainable outliers</td>
<td></td>
</tr>
<tr>
<td>- Contamination of pipettes, tips or containers</td>
<td></td>
</tr>
<tr>
<td>- Insufficient washing (conjugates not properly removed)</td>
<td></td>
</tr>
<tr>
<td>Too high within-run CV%</td>
<td></td>
</tr>
<tr>
<td>- Reagents and/or strips not pre-warmed to Room Temp. prior to use</td>
<td></td>
</tr>
<tr>
<td>- Plate washer is not washing correctly (suggestion: clean washer head)</td>
<td></td>
</tr>
<tr>
<td>Too high between-run</td>
<td></td>
</tr>
<tr>
<td>- Incubation conditions not constant (time, temperature)</td>
<td></td>
</tr>
</tbody>
</table>
| - Controls and samples not dispensed at the same time (with the
16.0 REFERENCES

