PARACETAMOL
(Acetaminophen) Assay Kit

Instructions for Use
For in vitro diagnostic use only
Store in DARK at 2 to 8°C
DO NOT FREEZE

Product Code
K8001 K8002

Lyophilised Enzyme 1 vial 3 vials
Enzyme Diluent 1 x 45mL 1 x 45mL
Colour Reagent A 1 x 65mL 1 x 65mL
Colour Reagent B 1 x 65mL 1 x 65mL
Aqueous Calibrator (standard) 1 x 3.0mL 2 x 3.0mL
(2.0 mmol/L / 302 mg/L)

Cambridge Life Sciences
14 St. Thomas’ Place
Cambridgeshire Business Park
Ely, Cambs CB7 4EX, UK
Tel: 01353 645200 Fax: 01353 645250
e-mail: sales@clsdiagnostics.com
www.clsdiagnostics.com

K5055.02 Mar ‘05
6. References

1. Clinical Application

Paracetamol is a commonly used analgesic which, if taken in excessive amounts, can lead to toxic liver damage and, less commonly, renal impairment. The major metabolites of paracetamol are the glucuronide and sulphate derivatives. A small proportion of a metabolite formed by microsomal oxidation is conjugated to glutathione and excreted subsequently as cysteine or mercapturate conjugates. If the glutathione stores of the liver become depleted in the presence of a large amount of paracetamol, the oxidised metabolite combines with liver cell components causing hepatic necrosis. The hepatocellular damage can be reduced by giving the patient compounds containing thiol groups such as methionine and N-acetyl cysteine. The need to give one of these compounds is assessed on the measurement of the concentration of the parent drug in the blood, between four and twelve hours after ingestion.

2. Principle of the Assay

The method is based on the use of an enzyme specific for the amide bond of acylated aromatic amines. It cleaves the paracetamol molecule, yielding p-aminophenol, which reacts specifically with o-cresol in ammoniacal copper solution to produce a blue colour. The assay is specific for the parent compound and does not detect paracetamol metabolites.

Paracetamol \[\xrightarrow{Aryl	ext{酰胺酶}}\] p-aminophenol + acetic acid
\[p\text{-aminophenol} + o\text{-cresol} + \text{ammoniacal copper sulphate} \rightarrow \text{indophenol (blue)}\]
3. Sample

Fresh, clear, unhaemolysed human serum is the recommended sample. Plasma collected in EDTA, heparin, fluoride oxalate or citrate collection tubes may be used.

It should be noted that patient samples containing conjugates of paracetamol, which have been stored for more than two weeks at room temperature, may yield paracetamol as a result of degradation of the conjugates.

4. Use of the Kit

Reagent Preparation and Storage

Reconstitute each vial of lyophilised enzyme when required. Remove the cap and stopper, add 10mL of enzyme diluent. Replace the stopper and swirl contents, inverting occasionally. Allow to stand at room temperature for five minutes. After reconstitution the enzyme reagent is stable for 3 months or until the expiry date, whichever is sooner, if stored at 2 to 8°C.

If the lyophilised enzyme appears as a small hard pellet or is difficult to dissolve then the reagent should not be used.

Turbidity may develop in the working enzyme reagent on prolonged storage. This will not adversely affect the performance of the assay. Use the other reagents as supplied.

Reagent Blank

The reagent blank should be constant for each kit. To measure it, use distilled water as the sample and follow the assay procedure.

If the patient sample is highly pigmented or lipaemic, it is recommended that a sample blank be set up. Replace the enzyme reagent with distilled water and follow the assay procedure.

n-acetyl cysteine‡
adetysalicylic acid‡
aminobarbital
amitriptyline
amphetamine
caffeine
chloral hydrate* chlordiazepoxide*
chlorpromazine
dextropropoxyphene
diazepam*
dihydrocodeine
diphenhydramine
imipramine
indomethacin
lorazepam*
meprobamate
methadone
methaqualone
nitrazepam*
oxypetine
p-aminosalicylic acid
pentazocine
p-ethoxyacetanilide (phenacetin)
p-ethoxyaniline (phenetidine)
phenobarbitone
phenytoin
promethazine
salicylamide
salicylic acid†
salicyluric acid
secobarbitone
sodium barbitone
theophylline
tolbutamide

* Tested at recorded peak plasma overdose concentrations (less than 1 mmol/L).
† Tested at a concentration of 5 mmol/L.
‡ Tested at a concentration of 1 g/L.

Important: Although the use of the manual method does not indicate any significant interference (under recovery) in the presence of n-acetyl cysteine, users of this product with automated analysers should ensure maintenance of the ratios of reagents to samples to avoid any possible interference. Any changes should be verified by the user.
Sensitivity
The sensitivity, defined as two standard deviations from zero (blank subtracted), was found to be 0.01 mmol/L (1.51mg/L).

Linearity
The method is linear up to a sample paracetamol concentration of 2.5 mmol/L (378mg/L).

Recovery
Analysis of serum samples to which known amounts of paracetamol had been added gave a mean recovery of 100.1% (range 98.6 to 103.1%).

Non-specific Absorbance
Paracetamol is not a physiological analyte. Samples of normal (paracetamol free) plasma or serum will yield a small absorbance, typically less than 0.04 after blank subtraction.

Interferences
No interference was found using heparin, EDTA, fluoride oxalate and citrate blood collection tubes. Lipids may be removed using Lipoclear tubes taking into account the 20% dilution effect.

The method does not measure the common metabolites of paracetamol (glucuronide, sulphate, cysteine and mercapturate). In addition, no reaction was obtained with the following drugs at a concentration of 1 mmol/L:

Equipment and Reagents not Supplied
Spectrophotometer capable of reading to 1.5 absorbance units at 615nm, with 1cm light path cells or an equivalent flow through cuvette.
50µL, 0.5mL, 1.0mL and 10mL pipettes
Distilled or deionised water

Assay Procedure
It is recommended that samples be tested in duplicate. Experience with the technique may, however, suggest that single determinations of samples are adequate at the discretion of the user. A paracetamol calibrator (standard) is included with the reagents and should be used to calibrate the manual procedure with each run.

1. For each assay dispense 50µL of either sample, calibrator or control into the respective cuvettes.
2. Add 0.5mL of reconstituted enzyme reagent and mix well.
3. Incubate at room temperature (15 to 25°C) for five minutes.
4. To each cuvette add 1mL of colour reagent A. Then add 1mL of colour reagent B and mix well.
5. Incubate for a minimum of four minutes and a maximum of sixty minutes at room temperature (15 to 25°C). Read absorbances at 615nm using a spectrophotometer.

Calculation of Results
Sample concentration (mmol/L) = \(\frac{\text{Sample absorbance} - B}{\text{Calibrator absorbance} - B} \times S \)

Where B = blank absorbance, S = calibrator concentration (2.0mmol/L or 302mg/L).
Conversion: mmol/L x 151 = mg/L, mg/L / 151 = mmol/L
These instructions describe how to perform the assay manually with a spectrophotometer. However, it is also possible to run this assay on a range of automated analysers. Protocols are available for most clinical chemistry automates. The general parameters and the conditions have been validated by Cambridge Life Sciences. For further information, please contact Customer Services at Cambridge Life Sciences or your local distributor. Current versions of the protocols can be obtained from our website; www.clsdiagnostics.com and it is advised that the user confirms that the current version is being used.

Quality Control
Good laboratory practice requires that quality control specimens be included in every run to monitor assay performance. The quality control samples should be assayed repeatedly to establish mean values and working ranges.

The absorbance of the 2.0mmol/L (302mg/L) calibrator should be between 0.80 and 1.05 after subtraction of the blank absorbance.

Safety Precautions
For in-vitro diagnostic use only. For Professional use only.

Colour Reagent A contains 0.9% o-cresol. Avoid contact with skin and eyes. This is harmful in contact with skin and if swallowed. It is also irritating to eyes. In case of contact with skin, wash immediately with plenty of water. If you feel unwell, seek medical advice immediately.

Colour Reagent B is irritating to eyes. In case of contact with eyes, rinse immediately with plenty of water and seek medical advice.

5. Performance

Precision
Typical precision for the assay is as follows:

<table>
<thead>
<tr>
<th>Conc (mmol/L)</th>
<th>S.D. (mmol/L)</th>
<th>Conc (mg/L)</th>
<th>S.D. (mg/L)</th>
<th>C.V. (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intra assay</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.20</td>
<td>0.005</td>
<td>30.2</td>
<td>0.755</td>
<td>2.4</td>
</tr>
<tr>
<td>0.37</td>
<td>0.004</td>
<td>55.9</td>
<td>0.604</td>
<td>1.1</td>
</tr>
<tr>
<td>1.17</td>
<td>0.012</td>
<td>176.7</td>
<td>1.812</td>
<td>1.0</td>
</tr>
<tr>
<td>Inter assay</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.23</td>
<td>0.006</td>
<td>34.7</td>
<td>0.906</td>
<td>2.6</td>
</tr>
<tr>
<td>0.41</td>
<td>0.006</td>
<td>61.9</td>
<td>0.906</td>
<td>1.5</td>
</tr>
<tr>
<td>1.18</td>
<td>0.020</td>
<td>178.2</td>
<td>3.02</td>
<td>1.7</td>
</tr>
</tbody>
</table>

This data was obtained from plasma, using manual pipettes and with twenty determinations in each case.

Accuracy
When patient serum samples were assayed and the results compared with those obtained by using an HPLC method, the following regression equation resulted:

\[y = 1.04x + 0.005 \text{ (mmol/L)}, \quad r = 0.996, \quad n = 61 \]

where \(y \) = kit method and \(x \) = HPLC.
(Values shown are for an automated analysis).